【光能蜗牛的图形学之旅】求3维度空间异面直线的垂足点

【光能蜗牛的图形学之旅】求3维度空间异面直线的垂足点

图片[1]-【光能蜗牛的图形学之旅】求3维度空间异面直线的垂足点-海豚优课

微信图片_240.png

图片[1]-【光能蜗牛的图形学之旅】求3维度空间异面直线的垂足点-海豚优课

微信图片_247.png

求异面直线一般有定义法和向量法

通常来说,定义法的解法只适用于解题,而实际使用中,为了减少条件判断,通常使用向量法的方式

开始

题设:假设有两条直线 L1,L2 ,以及两条直线的方向向量V1,V2什么是异面直线举例,求其最短距离连线的连接点。

首先,最短距离很好求,也即是两异面直线公垂线的长度,选择L1上任意一点P1连接L2上任意一点P2,则线段P1P2在L1,L2的公垂线上的投影即是长度,这个太简单,而且百度搜索一搜一大堆,不解释

而异面直线的垂足点,则不是那么好求,我找了好一阵网上的代码,坑得要死,无奈只能自己写,

图片[3]-【光能蜗牛的图形学之旅】求3维度空间异面直线的垂足点-海豚优课

基本思路如下,

因为直线的定义可以由如下式子给出

L(t) = P + t*V

则在L1和L2上分别选择任意的p1,p2,以及对应的t1,t2,得到的L1(t1),L2(t2)。

写作如下等式

L1(t1) = P1 + t1V1————————–(1)

L2(t2) = P2 + t2V2————————–(2)

如果L1(t1),L2(t2)刚好是各自直线的垂足点,

那么可以得出此时| L2(t2)-L1(t1) | 的模长为最小值

图片[4]-【光能蜗牛的图形学之旅】求3维度空间异面直线的垂足点-海豚优课

且构成的 L2(t2)-L1(t1) 向量刚好就是公垂线

因为v1,和 v2都和公垂线垂直,所以,v1和v2各自和公垂线的点乘都为0

于是我们可以写出如下等式

( L2(t2)-L1(t1) ) . V1 = 0//.表示点乘

( L2(t2)-L1(t1) ) . V2 = 0

(t2V2-t1V1 + P2 – P1 ).V1 = 0

(t2V2-t1V1 + P2 – P1 ).V2 = 0

整理

图片[5]-【光能蜗牛的图形学之旅】求3维度空间异面直线的垂足点-海豚优课

t2V2.V1 – t1V1.V1 + (P2 – P1).V1 = 0

t2V2.V2 – t1V1.V2 + (P2 – P1).V2 = 0

a = V1 .V2 = V2.V1

b = V1.V1

c = V2.V2

d = (P2 – P1) .V1

e = (P2 – P1).V2

则上式可化简为

图片[6]-【光能蜗牛的图形学之旅】求3维度空间异面直线的垂足点-海豚优课

at2 – bt1 + d = 0

ct2 – at1 + e = 0

以下分三种情形讨论

当a = 0 ,即 V1 .V2 = V2.V1 = 0时什么是异面直线举例,表明原始两条直线互相垂直

t1 = d / b;

t2 = -e / c;

当a != 0时候

解上述方程

图片[7]-【光能蜗牛的图形学之旅】求3维度空间异面直线的垂足点-海豚优课

t1 = (ae -cd)/(aa-bc)

t2 = b/a * t1 – d/a

这里发现当(a * a – b * c) = 0时,即(V2.V1) * (V2.V1) = (V1.V1) * (V2.V2) = 0时,也就是两条直线平行或共线,此时无意义,所以只要排除即可

综上所述

a = 0 时

t1 = d / b;

t2 = -e / c;

(a * a – b * c) ! = 0 时

t1 = (ae -cd)/(aa-bc)

t2 = b/a * t1 – d/a

   class TLine{
        Vector3 source; //射线起点
        Vector3 vDirection;//射线方向
     }
    void MethodByLightSnail(TLine line1,TLine line2,Color color) {
        float a = Vector3.Dot(line1.vDirection,line2.vDirection);
        float b = Vector3.Dot(line1.vDirection,line1.vDirection);
        float c = Vector3.Dot(line2.vDirection,line2.vDirection);
        float d = Vector3.Dot((line2.source - line1.source),line1.vDirection);
        float e = Vector3.Dot((line2.source - line1.source),line2.vDirection);
        float t1 = 0;
        float t2 = 0;
        if (a == 0)
        {
            t1 = d / b;
            t2 = -e / c;
        }
        else if   (Mathf.Abs(a * a - b * c) < 0.0001f)//表明共线或平行,注意理想情况下应该是a * a - b * c == 0,才认为共线或平行,但在计算机世界里,有精度这个东西存在,所以我们近视的认为数值小于某一个值则认为等于0
        {//说明共线或平行
        }
        else {
            t1 = (a * e - c * d) / (a * a - b * c);
            t2 = b / a * t1 - d / a;
        }
 
    }

© 版权声明
THE END
喜欢就支持一下吧
点赞25赞赏 分享
评论 抢沙发

请登录后发表评论

    暂无评论内容